New Whitepaper on AI Standards for Engineering

Data is literally the “new gold” of our time. While two zettabytes (equivalent to one billion terabytes) of data were generated worldwide in 2010, this figure had already risen to 47 zettabytes by 2020. Moreover, this immense growth is forecast to exceed 2142 zettabytes (in 2035) in the coming years. The use of artificial intelligence holds enormous potential for tapping into and utilizing this flood of data, especially for product creation. The white paper explores the question of which data standards can be used by common AI frameworks.

It shows that in addition to the amount of data, the number of end or producer devices is also increasing: According to Statista, the number of internet-connected products is estimated to reach 75 billion by 2025.

To tap and use this flood of data, the use of artificial intelligence holds enormous potential, especially for product creation. Successful use of AI can cut production costs, reduce development time and make optimal use of resources. For example, the use of AI is expected to increase profitability by an average of 38% by 2035.

In order to be able to fully develop the potential of artificial intelligence for product creation, the data from product creation plays a central role: The heterogeneous, complex data from the various software frameworks of engineering IT must be made usable for AI applications. Manufacturers of software solutions, especially in the AI field, are adapting to the increasing demand from industry. However, industry standards and those in the even newer “AI sector” differ, which is why collaboration between the two domains has not yet reached its full potential. We are therefore investigating the extent to which data standards commonly used in engineering IT can be read and used directly by the most common AI frameworks, and in which cases this may not work smoothly.

For this purpose, we have defined the term “AI Readiness” of a standard in the project, as the ability of the standard to be read in by defined AI frameworks or to be transformed into formats that have this ability. With this, we aim to provide a recommendation for the use of appropriate data standards from engineering IT for use in AI applications, as well as address specific challenges. This white paper provides an initial overview of the results of the analysis. The focus is on neutral, open standards to ensure a cross-tool and cross-vendor view.

Download whitepaper for free

You may also be interested in

We Are Among the TOP 24 at OUT OF THE BOX.NRW – Your Vote Counts!

We are thrilled to announce that AI Marketplace has been selected as one of the Top 24 startups for OUT OF THE BOX.NRW 2024. This selection was made by a …

Success at the prostep ivip Symposium 2024

We are proud to have won the coveted Start-up Pitch Award at the prostep ivip Symposium in Munich! Our performance in the Pitch Area allowed us to present our marketplace …

moonshots & moneten 2024

Great news for all those who follow the start-up scene in Ostwestfalen-Lippe: AI Marketplace has won a wildcard for the upcoming “OWL Start-up Pitch” at the Mountain Camp of the …

Zwei junge Kollegen betrachten eine digitale Modelldarstellung

Using Chat with Product Data? The Future of PLM and Artificial Intelligence

What is AI and how does it change the way engineers work? In a hands-on webinar, we join experts from the Fraunhofer Institute for Mechatronics Design IEM and Aras to shed light on the exciting world of artificial intelligence (AI) in conjunction with product lifecycle management (PLM).

Markt der digitalen Möglichkeiten

Im Rahmen Digital-Gipfels präsentieren die Stadt Jena und der Freistaat Thüringen den “Markt der digitalen Möglichkeiten” – eine Messe, die eindrucksvoll aufzeigt, wie digitale Technologien bereits in verschiedenen Lebensbereichen integriert …

Vertrieb 2.0: Mit KI zum Vertriebserfolg

Viele Unternehmen kennen es: Informationen werden häufig auf unterschiedliche Systeme verteilt abgelegt. Die Negativkonsequenzen können weitreichend sein. Mit KI-Software kann passgenau an den bisherigen Schwachstellen der unternehmerischen Datenlandschaft angesetzt werden, indem Kundendaten in ein zentrales System überführt werden.

FDT Demo Day #1: KI in der Anwendung

Am 11.07.2023 findet die erste Ausgabe des Demo Days zum Thema „KI in der Anwendung“ des Forum Digitale Technologien statt. Von KI im Engineering über angewandte Produktionsunterstützung, vom KI-Service-Ökosystem bis …

Menschengruppe steht im Innenhof eines Bürogebäudes.

KI-Marktplatz: Wie Künstliche Intelligenz das Engineering revolutioniert

Gefördertes Forschungsprojekt endet – Start-up macht weiter Entwicklungszeiten verringern, Kosten reduzieren und zeitgleich die Produktivität steigern: Warum sich Unternehmen mit Künstlicher Intelligenz (KI) im Engineering beschäftigen sollten, hat das vom …

AI Marketplace: thinking outside the box to find solutions

The AI Marketplace offers technical solutions and solution paths on the topic of artificial intelligence. We spoke with Leon Özcan and Christoph Mertens about the next steps.

BMWK-Sommercampus des „KI-Innovationswettbewerbs“

Der BMWK-Sommercampus 2023 findet vom 21. bi 22. Juni in Berlin statt und richtet sich an alle Projektbeteiligten des KI-Innovationswettbewerbs.

Conference System:Ability: Advanced Systems Engineering for Sustainable Innovations

Rund 180 Teilnehmer:innen nahmen an der system:ability Konferenz teil, um die Herausforderungen und Chancen des Advanced Systems Engineering zu diskutieren.

From AI to sustainability – OWL at Hannover Messe

AI and sustainability – these were the key topics with which the OstWestfalenLippe region presented itself at this year’s Hannover Messe from April 17 to 21. The world’s leading trade …