Compare requirements documents automatically

If you want to compare requirements documents in the company, such as feedback from suppliers, this can be very time-consuming. Artificial Intelligence methods can help. We will show you which methods can be of assistance to you.

The first step is to interpret the data. This is done with the help of Natural Language Processing (NLP) or Text Mining. With Natural Language Processing, natural language can be captured and processed in a computer-based way thanks to rules and algorithms. The semantics and grammatical structures of the language are examined. In contrast, text mining does not take semantic features into account. For this, the method is particularly useful in the analysis of unstructured text data. For example, automatic analysis can be used to extract key statements from texts without having to read the texts themselves.

In this case, the text mining method Tokenization helps us to decompose the requirement documents into individual parts. Tokenization is a common task in natural language processing (NLP). In this method, a text is broken down into smaller units called tokens. Tokens can be either words, characters or subwords.

Once the text has been decomposed, comparison can take place by using Information Retrieval or sentence analysis, i.e. methods from text mining or NLP. Information retrieval can be used to analyze requirements for existing conflict. Information retrieval involves the evaluation of unstructured data, as search engines do with the Internet, for example.

This is what companies need to consider

For companies, the effort lies primarily in the creation of the solution systematics, since it must be precisely defined for Artificial Intelligence what counts as a difference in the documents to be compared and how these are further treated. In addition, access to the APIs of the tools in which the requirements documents are located must be ensured.

Automated comparison of requirements can save companies a lot of time and directly improve the end product. This also increases the quality of the data and documents.

 

Find the right AI provider

You may also be interested in

Das Wort Change prangt als weiße Schrift auf schwarzem Grund und spiegelt sich. Es soll den Einsatz von Künstlicher Intelligenz im Change Management darstellen.

Wie Künstliche Intelligenz das Change Management verbessert

Das Change-Management ist in der Produkt- und Dienstleistungsentwicklung von großer Bedeutung. Künstliche Intelligenz kann dabei helfen, Auswirkungen von Änderungen frühzeitig zu identifizieren und Fehler in der Entwicklung zu vermeiden.

Zwei Personen sitzen vor Dokumenten und analysieren Wettbewerbsdaten.

Effiziente Wettbewerbsanalyse unterstützt von KI

KI kann Unternehmen bei der Durchführung einer kontinuierlichen Wettbewerbsanalyse unterstützen, indem sie die Aufbereitung und Recherche von Daten automatisieren und die Interpretation und Visualisierung von Analysen vereinfachen.

Vier Textmarker sind auf weißem Grund zu sehen. Ein blauer, ein lilaner und ein oranger Textmarker sind geschlossen. Ein pinker Textmarker ist geöffnet.

Systementwurf: Dank KI relevante Infos extrahieren

KI kann beim Systementwurf unterstützen, indem sie relevante Informationen aus Prüf- und Testberichten extrahiert und diese für den aktuellen Systementwurf vorselektiert. Dies führt zu einer Verbesserung des Endprodukts und einer Optimierung der Datenqualität und Dokumentation.

Ein Kabelbaum auf organgem Grund.

Automatisierte Konsistenz im E/E Bereich

Erfahren Sie, wie Künstliche Intelligenz bei der Sicherstellung der Konsistenz von Modellen zwischen OEM und Zulieferern helfen kann und welche Vorteile dies bietet.

Ein abstraktes 3D Modell soll ein CAD-Modell darstellen, das bei der Finite-Elemente-Methode benötigt wird.

KI-Unterstützung in der Finite-Elemente-Methode

Erfahren Sie, wie Künstliche Intelligenz in der Finite-Elemente-Analyse eingesetzt werden kann und welche Vorteile dies für Unternehmen bietet.

Eine Person bedient einen Laptop. Auf dem Bildschirm des Laptop ist ein Daten-Diagramm zu sehen.

Field Quality Analytics: KI hilft Produktqualität sicherzustellen

Field Quality Analytics ist ein Ansatz, um Qualitätsprobleme in Produkten zu erkennen und zu beheben. Dabei kann KI eine Unterstützung sein.

Ein Bild eines Diagramms, das die Verbindungen zwischen verschiedenen Konzepten und Ideen in einem Knowledge-Graph darstellt.

Wie ein KI-basierter Knowledge Graph bei Innovationen unterstützt

Künstliche Intelligenz (KI) kann Unternehmen bei der Entwicklung von Innovationen unterstützen, indem sie die Erstellung und Nutzung von Technology Knowledge Graphs vereinfacht.

Viele Zahlenreihen sind zu sehen, ein Teil der Zahlen ist im Fokus, ein anderer Teil unscharf. Durch die Zahlen sollen die KI-Methoden symbolisiert werden, mit denen Anforderungen strukturiert werden können.

KI-unterstützte Strukturierung von Anforderungen

Künstliche Intelligenz kann bei der Strukturierung von textuellen Anforderungen in der Systementwicklung helfen. Erfahren Sie, welche Methoden zum Einsatz kommen.

Mit KI Konkurrenzprodukte analysieren

Künstliche Intelligenz (KI) kann bei der Analyse von Konkurrenzprodukten eine große Hilfe sein, denn sie analysiert schnell und deckt Schwächen und Stärken auf.

Analyzing user preferences and behavior with AI

The analysis of user preferences and behavior helps companies optimize their products and services. We show you how Artificial Intelligence can help to analyze the data.

Ensuring quality of requirements thanks to AI

The compilation of all requirements for software, for example, is a complex task. AI can help to check and thus ensure the quality of requirements.

Artificial Intelligence in Quality Assurance

With the help of a systematic analysis, defects in a product can be detected at an early stage. Artificial Intelligence methods can support such an analysis in quality assurance.