Anforderungsdokumente automatisiert vergleichen

Möchten Sie im Unternehmen Anforderungsdokumente wie beispielsweise die Rückmeldung von Lieferanten vergleichen, kann dies sehr zeitaufwendig sein. Abhilfe schaffen da Methoden der Künstlichen Intelligenz, wir zeigen Ihnen welche Methoden Ihnen helfen können.

In einem ersten Schritt werden die Daten interpretiert. Dies geschieht mit Hilfe der Verarbeitung natürlicher Sprache (Natural Language Processing, NLP) oder dem Text Mining. Mit Natural Language Processing kann natürliche Sprache erfasst und dank Regeln und Algorithmen computerbasiert verarbeitet werden. Dabei werden die Semantik und die grammatikalischen Strukturen der Sprache untersucht. Im Gegensatz dazu berücksichtigt das Text Mining keine semantischen Merkmale. Dafür ist die Methode vor allem bei der Analyse von unstrukturierten Textdaten hilfreich. Durch die automatische Analyse lassen sich beispielsweise Kernaussagen aus Texten extrahieren, ohne dass die Texte selbst gelesen werden müssen.

In diesem Fall hilft uns das Text-Mining-Verfahren Tokenisierung, um die Anforderungsdokumente in Einzelteile zerlegt werden. Die Tokenisierung ist eine häufige Aufgabe bei der Verarbeitung natürlicher Sprache (NLP). Bei dieser Methode wird ein Text in kleinere Einheiten, sogenannte Token, zerlegt. Token können dabei entweder Wörter, Zeichen oder Teilwörter sein.

Ist der Text zerlegt, kann der Vergleich durch den Einsatz von Information Retrieval (Informationsrückgewinnung) oder Sentence Analysis, also Verfahren aus dem Text Mining oder NLP, stattfinden. Mit Hilfe von Information Retrieval können die Anforderungen auf bestehende Konflikt analysiert werden. Beim Information Retrieval werden unstrukturierte Daten ausgewertet, wie es beispielsweise Suchmaschinen mit dem Internet machen.

Das müssen Unternehmen beachten

Für Unternehmen liegt der Aufwand vor allem in der Erstellung der Lösungssystematik, da für die Künstliche Intelligenz genau definiert werden muss, was in den zu vergleichenden Dokumenten als Unterschied gilt und wie diese weiter behandelt werden. Zudem muss der Zugriff auf die APIs der Tools, in denen die Anforderungsdokumente liegen, sichergestellt werden.

Durch den automatisierten Vergleich von Anforderungen können Unternehmen viel Zeit einsparen und eine direkte Verbesserung des Endprodukts erreichen. Dadurch steigt auch die Qualität der Daten und Dokumente.

 

Finden Sie den passenden KI-Anbieter

Das könnte Sie auch interessieren

Das Wort Change prangt als weiße Schrift auf schwarzem Grund und spiegelt sich. Es soll den Einsatz von Künstlicher Intelligenz im Change Management darstellen.

Wie Künstliche Intelligenz das Change Management verbessert

Das Change-Management ist in der Produkt- und Dienstleistungsentwicklung von großer Bedeutung. Künstliche Intelligenz kann dabei helfen, Auswirkungen von Änderungen frühzeitig zu identifizieren und Fehler in der Entwicklung zu vermeiden.

Zwei Personen sitzen vor Dokumenten und analysieren Wettbewerbsdaten.

Effiziente Wettbewerbsanalyse unterstützt von KI

KI kann Unternehmen bei der Durchführung einer kontinuierlichen Wettbewerbsanalyse unterstützen, indem sie die Aufbereitung und Recherche von Daten automatisieren und die Interpretation und Visualisierung von Analysen vereinfachen.

Vier Textmarker sind auf weißem Grund zu sehen. Ein blauer, ein lilaner und ein oranger Textmarker sind geschlossen. Ein pinker Textmarker ist geöffnet.

Systementwurf: Dank KI relevante Infos extrahieren

KI kann beim Systementwurf unterstützen, indem sie relevante Informationen aus Prüf- und Testberichten extrahiert und diese für den aktuellen Systementwurf vorselektiert. Dies führt zu einer Verbesserung des Endprodukts und einer Optimierung der Datenqualität und Dokumentation.

Ein Kabelbaum auf organgem Grund.

Automatisierte Konsistenz im E/E Bereich

Erfahren Sie, wie Künstliche Intelligenz bei der Sicherstellung der Konsistenz von Modellen zwischen OEM und Zulieferern helfen kann und welche Vorteile dies bietet.

Ein abstraktes 3D Modell soll ein CAD-Modell darstellen, das bei der Finite-Elemente-Methode benötigt wird.

KI-Unterstützung in der Finite-Elemente-Methode

Erfahren Sie, wie Künstliche Intelligenz in der Finite-Elemente-Analyse eingesetzt werden kann und welche Vorteile dies für Unternehmen bietet.

Eine Person bedient einen Laptop. Auf dem Bildschirm des Laptop ist ein Daten-Diagramm zu sehen.

Field Quality Analytics: KI hilft Produktqualität sicherzustellen

Field Quality Analytics ist ein Ansatz, um Qualitätsprobleme in Produkten zu erkennen und zu beheben. Dabei kann KI eine Unterstützung sein.

Ein Bild eines Diagramms, das die Verbindungen zwischen verschiedenen Konzepten und Ideen in einem Knowledge-Graph darstellt.

Wie ein KI-basierter Knowledge Graph bei Innovationen unterstützt

Künstliche Intelligenz (KI) kann Unternehmen bei der Entwicklung von Innovationen unterstützen, indem sie die Erstellung und Nutzung von Technology Knowledge Graphs vereinfacht.

Viele Zahlenreihen sind zu sehen, ein Teil der Zahlen ist im Fokus, ein anderer Teil unscharf. Durch die Zahlen sollen die KI-Methoden symbolisiert werden, mit denen Anforderungen strukturiert werden können.

KI-unterstützte Strukturierung von Anforderungen

Künstliche Intelligenz kann bei der Strukturierung von textuellen Anforderungen in der Systementwicklung helfen. Erfahren Sie, welche Methoden zum Einsatz kommen.

Mit KI Konkurrenzprodukte analysieren

Künstliche Intelligenz (KI) kann bei der Analyse von Konkurrenzprodukten eine große Hilfe sein, denn sie analysiert schnell und deckt Schwächen und Stärken auf.

Präferenzen und Verhalten von Nutzer:innen mit KI analysieren

Die Analyse von Präferenzen und dem Verhalten von Nutzer:innen hilft Unternehmen bei der Optimierung ihrer Produkten und Dienstleistungen. Wir zeigen Ihnen wie Künstliche Intelligenz dabei helfen kann, die Daten auszuwerten.

Dank KI Anforderungsqualität sicherstellen

Die Zusammenstellung aller Anforderungen beispielsweise an eine Software ist eine komplexe Aufgabe. KI kann dabei Helfen die Qualität von Anforderungen zu überprüfen und somit sicherzustellen.

Künstliche Intelligenz in der Qualitätssicherung

Mit Hilfe einer systematischen Analyse können Fehler am Produkt früh erkannt werden. Methoden der Künstlichen Intelligenz können eine solche Analyse in der Qualitätssicherung unterstützen.