Visualize linked data with the help of AI

In order to check existing systems, it must be possible to trace requirements back to events in the development process. In order to ensure this traceability, it is necessary to link requirements to specific events. However, user-friendly tracing is difficult even when requirements and events are linked, because there are a large number of them. Linked Data Visualization can help with the problem.

The Linked Data Visualization method aims at the graphical representation of certain interesting information within a data set. The visualizations must be selected according to the type of data and populated with appropriate inputs that include requirements, development events, and relationships.

The benefit in tracing requirements is that organizations can analyze the impact of events. When changes are made, the impact on requirements or other system elements can be identified and tracked. As a result, any problems that arise can be quickly identified. This can support employees when clarity is otherwise not always available in complex system models and structures.

For this to succeed, the input events must be created and prepared with appropriate care. In addition, employees must be trained to create the input events and to handle the traceability analyses.

Discover our platform

 

You may also be interested in

Zwei junge Kollegen betrachten eine digitale Modelldarstellung

Using Chat with Product Data? The Future of PLM and Artificial Intelligence

What is AI and how does it change the way engineers work? In a hands-on webinar, we join experts from the Fraunhofer Institute for Mechatronics Design IEM and Aras to shed light on the exciting world of artificial intelligence (AI) in conjunction with product lifecycle management (PLM).

Menschengruppe steht im Innenhof eines Bürogebäudes.

KI-Marktplatz: Wie Künstliche Intelligenz das Engineering revolutioniert

Gefördertes Forschungsprojekt endet – Start-up macht weiter Entwicklungszeiten verringern, Kosten reduzieren und zeitgleich die Produktivität steigern: Warum sich Unternehmen mit Künstlicher Intelligenz (KI) im Engineering beschäftigen sollten, hat das vom …

AI Marketplace: thinking outside the box to find solutions

The AI Marketplace offers technical solutions and solution paths on the topic of artificial intelligence. We spoke with Leon Özcan and Christoph Mertens about the next steps.

From AI to sustainability – OWL at Hannover Messe

AI and sustainability – these were the key topics with which the OstWestfalenLippe region presented itself at this year’s Hannover Messe from April 17 to 21. The world’s leading trade …

Sustainability and engineering – how do they go together?

In the AI Marketplace, we are showing levers for more sustainable engineering with a new campaign.

Hannover Messe 2023

AI and sustainability – these are the main topics with which the OstWestfalenLippe region will present itself at the Hannover Messe from April 17 to 21. Included: the AI marketplace in the heart of Hall 7.

Das Wort Change prangt als weiße Schrift auf schwarzem Grund und spiegelt sich. Es soll den Einsatz von Künstlicher Intelligenz im Change Management darstellen.

Wie Künstliche Intelligenz das Change Management verbessert

Das Change-Management ist in der Produkt- und Dienstleistungsentwicklung von großer Bedeutung. Künstliche Intelligenz kann dabei helfen, Auswirkungen von Änderungen frühzeitig zu identifizieren und Fehler in der Entwicklung zu vermeiden.

Zwei Personen sitzen vor Dokumenten und analysieren Wettbewerbsdaten.

Effiziente Wettbewerbsanalyse unterstützt von KI

KI kann Unternehmen bei der Durchführung einer kontinuierlichen Wettbewerbsanalyse unterstützen, indem sie die Aufbereitung und Recherche von Daten automatisieren und die Interpretation und Visualisierung von Analysen vereinfachen.

Vier Textmarker sind auf weißem Grund zu sehen. Ein blauer, ein lilaner und ein oranger Textmarker sind geschlossen. Ein pinker Textmarker ist geöffnet.

Systementwurf: Dank KI relevante Infos extrahieren

KI kann beim Systementwurf unterstützen, indem sie relevante Informationen aus Prüf- und Testberichten extrahiert und diese für den aktuellen Systementwurf vorselektiert. Dies führt zu einer Verbesserung des Endprodukts und einer Optimierung der Datenqualität und Dokumentation.

Ein Kabelbaum auf organgem Grund.

Automatisierte Konsistenz im E/E Bereich

Erfahren Sie, wie Künstliche Intelligenz bei der Sicherstellung der Konsistenz von Modellen zwischen OEM und Zulieferern helfen kann und welche Vorteile dies bietet.

Ein abstraktes 3D Modell soll ein CAD-Modell darstellen, das bei der Finite-Elemente-Methode benötigt wird.

KI-Unterstützung in der Finite-Elemente-Methode

Erfahren Sie, wie Künstliche Intelligenz in der Finite-Elemente-Analyse eingesetzt werden kann und welche Vorteile dies für Unternehmen bietet.

Eine Person bedient einen Laptop. Auf dem Bildschirm des Laptop ist ein Daten-Diagramm zu sehen.

Field Quality Analytics: KI hilft Produktqualität sicherzustellen

Field Quality Analytics ist ein Ansatz, um Qualitätsprobleme in Produkten zu erkennen und zu beheben. Dabei kann KI eine Unterstützung sein.